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Critical behavior of the one-dimensional diffusive pair contact process
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The phase transition of the one-dimensional diffusive pair contact process is investigabédlbgter
mean-field approximations and high precision simulations. Nke3,4 cluster approximations exhibit smooth
transition line to absorbing state by varying the diffusion rBtewvith 8,=2 mean-field order parameter
exponent of the pair density. This contradicts with forndes2 results, where two different mean-field
behavior was found along the transition line. Extensive dynamical simulatios=at0® lattices give esti-
mates for the order parameter exponents of the particles fo=@G50.7. These data may support former two
distinct class findings. However, the gap between low- and Bigexponents is narrower than previously
estimated and the possibility for interpreting numerical data as a single class behavior with exponents
=0.21(1), B=0.40(1) assuming logarithmic corrections is shown. Finite-size scaling results are also pre-
sented.
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. INTRODUCTION In(t)

p(t,pe)= <

The exploration of nonequilibrium universality classes is
of current interest of research. In this area, most systemwhile in the inactive phasey(t,p.) =t~ 2 These were con-
investigated exhibit phase transitions to absorbing states witfirmed by simulation$10]. In case of fermionic particles of
such weak fluctuations from which no return is possiblethis model diffusive pair contact proce§3CPD density ma-
[1,2]. For a long time, only the robust directed percolationtrix renormalization group analysid4], coherent anomaly
(DP) universality class has been knoW\4|. Later, systems extrapolation16], and simulation$15,16 found a different
with extra conservation laws and symmetries were showrkind of critical phase transition. However, the critical expo-
belong to other universality classE5—8]. In the past few nents seem to depend on the diffusion strerytand differ-
years it turned out that there are novel classes in lowent interpretations of data have been born. These embrace the
dimensional reaction-diffusion systems, where neithepossibilities of continuously changing exponents, two-
bosonic field theory nor symmetry arguments can give betteuniversality classefl6], and single class with huge correc-
understanding of the critical behavif®]. This is probably tions[14,22.
due to the fact that in low-dimension topological constraints Very recently, well defined set of critical exponents have
become effective, blocking the motion of reacting particlesbeen reported in different versions of binary production
[10]. While bosonic field theories cannot capture this featurePCPD-like processg®3]. However, these simulations were
fermionic field theories have not been successful for sucllone at a fixed, high-diffusion per annihilation rate and, as
systems yet. In fact the critical classes of such models can beill be shown in Sec. IV, the exponent estimates agree well
different, depending on fermionic or bosonic particles, whichwith those of this paper in the high-diffusion region. Even
are involved in Refs[11-14]. more recently, two studiel24,25 reported nonuniversality

Recently, novel universal behavior is reported in somen the dynamical behavior of the PCPD. While the former
low-dimensional reaction-diffusion models featured by pro-one by Dickman and Menezes explored different sectars
duction at pairs and explicit single particle diffusiph3— reactive and a diffusive onén the time evolution and gave
21]. In these systems, particle production competes with painontrivial exponent estimates, the latter one by Hinrichsen
annihilation and diffusion. If the production wins steady provided a hypothesis that the ultimate long time behavior
states with finite particle, density appear(farmionic mod-  should be characterized by DP behavior.
els with hard-core repulsion, while in unrestrictdzbsonig Just before the submission of this paper, a preprint by
models the density diverges. By lowering the production orKockelkoren and Chatg26] showed simulation results for a
annihilation rate a doublet of absorbing states without symmodified version of PCPD which is in between fermionic
metries emerges. One of such states is completely empty, tlad bosonic cases. That means they discard the single par-
other possesses a single wandering particle. In case of fernticle occupation constraint on the lattice but suppress mul-
onic systems, the transition to absorbing states is continuougple occupancy by an exponentially decreasing creation
with novel, yet not completely settled critical behavior. probability (p"'?) of the particle number. They claim that

The existing field theory of binary production reaction- their stochastic cellular automato(6CA) model shows
diffusion system$13], describing bosonic particles could not smaller corrections to scaling than the PCPD and exhibits
be solved by standard renormalization procedures, but hintesingle universality class transition.
at a transition with non-DP behavior. At the transition point The two-universality class scenario was backed by pair-
of the one-dimensional model it predicts a density decay ofnean-field approximatiori14] that showed two different
the form mean-field behavior by varyin® and simulationg16] for

1063-651X/2003/6(11)/0161116)/$20.00 67016111-1 ©2003 The American Physical Society



GEZA ODOR PHYSICAL REVIEW E 67, 016111 (2003

the order parameter density exponents. Such kind of mean- 1r . . " T . —
field behavior is absent if we replace the annihilation process
AA—J by a coagulatiotAA— A [18]. By the investigation

of the parity conserving version of the PCPD, the mean-field
and pair-mean-field approximations resulted in similar phase
diagrams, but higher order cluster mean-field showed a
single mean-field class behavi@1]. Hence the authors con-
cluded that for appropriate description of such binary pro- &
duction models at leasN=3 clusters are needed. Then
mean-field behavior was indeed founddsd.=2 by simu-
lations[21].

In the present work, | showiN=3,4 cluster mean-field as b . /
results for the PCPD model that again suggest a single mean- . o
field universality class. This does not necessarily imply that | . J -
below d.=2 only one class should exist. Higher precision 0 e : L :
simulations than that of Ref16] are also presented in the : :
second part of this paper that provide better exponent esti-
mates but still left this question open. | show that a single F|G. 1. Schematic phase diagram of the one-dimensional PCPD
universality class scenario can be accepted if we assumgodel. Circles correspond to simulation and DMRG results; solid
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logarithmic corrections to data. line, site mean-field \=1); dashed line, pair approximatiom (
=2); dot-dashed lineN=3; and long-dashell=4 cluster mean-
II. THE PCPD MODEL field results discussed in Sec. lll.

A PCPD-like binary spreading process was introduced in
an early work by Grassbergg27]. Its preliminary simula-
tions in one dimension showed a non-DP type transition, but
these results have been forgotten for a long time. The PCPD  !ll. CLUSTER MEAN-FIELD RESULTS FOR PCPD
introduced by Carloret al. [14] is controlled by two inde-
pendent parameters: the probability of pair annihilapand
the probability of particle diffusiorD. The dynamical rules

a=1, a’2:2- (7)

Generalized¢luster mean-fieldpproximation introduced
by Refs.[28,29 was applied for the dynamical rulé¢®) of
the 1D fermionic lattice model. The master equationsNor

are =1,2,3,4 block probabilities were setup;
AAD OAA—AAA withrate (1-p)(1-D)/2,
B . | wzf(P {si}) ®
AA—D  withrate p(1—D), ot NS
AT~ DA with rate D. (2)  where site variables may take values=J,A. The equa-

. ] o . _ _ tions could be solved numerically for tHe/Py({s;})]/dt
The site mean-fieldipproximation gives a continuous transi- =0 steady state condition. Taking into account, spatial re-
tion at p.=1/3. For p<p, the particle and pair densities flection symmetries oPy({s;}) this involves ten indepen-

exhibit singular behavior, dent variables in case d=4. The particle(p(p,D)) and
B B pair (p,(p,D)) densities were expressed By({s;}) and the
p(=.P)=(Pe=P)",  pa(*,P)*(Pc=P)", (3) phase transition poinp.(D) was located for several values
while atp=p, they decay as of D. At p.(D) quadratic fitting of the form
p(t,p)xt™®,  po(t,pe)oct™ 22, (4) a(p—pc(D))+b(p—pc(D))? 9
with the exponents was applied forp(p,D) andp,(p,D). TheN=1 and 2 so-
lutions reproduced the results fit4] for particle and pair
a=12, a=1, B=1, p,=2. (®  densities. FON=2 the two regions, corresponding to differ-

ent leading order singularity gf,(p,D) with 8,=1,2 were
located by least square fit with the forf®). For N=3,4
approximations smootp.(d) phase transition lines were de-
termined that are shown in Fig. 1 and tabulated in Table I.
The quadratic fitting9) resulted in leading order singulari-
ties =1 for particles andB,=2 for pairs everywhere.
a=1, a,=1, B=1, B,=1. (6)  These are in contradiction with tHé=2 approximation re-
sults similarly to the parity conserving binary process model
In the entire inactive phase the decay is characterized by thease[21]. For that model simulations in two dimension,
exponents strengthened the single mean-field class behavior along

According to pair-mean-fieldapproximations the phase
diagram can be separated into two regisee Fig. 1. While
for D>1/7 the pair approximation gives the samgD) and
exponents as the site mean-field, 9 1/7 the transition
line breaks and the exponents are different
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TABLE I. Summary ofN=2,3,4 cluster mean-field approximation results.

N=2 N=3 N=4
D Pc ,8 ,82 Pc ﬂ ,82 Pc ﬂ BZ
0.9 0.3333 1 2 0.3252 1 2 0.3208 1 2
0.7 0.3333 1 2 0.3036 1 2 0.2875 1 2
0.5 0.3333 1 2 0.2727 1 2 0.2452 1 2
0.2 0.3333 1 2 0.2079 1 2 0.1845 1 2
0.1 0.2888 1 1 0.1840 1 2 0.1680 1 2
0.05 0.2421 1 1 0.1721 1 2 0.1606 1 2
0.0002 0.2002 1 1 0.1604 1 2 0.1537 1 2

p.(D) and it was conjectured that the pair approximation is

an odd one. Here, again | conclude that at Ié&st2 level of

It was suggested in Ref24] that one may get smaller

corrections to scaling if one excludes the purely diffusive

approximation is necessary to obtain a correct mean-fieldector by averaging over states having at least one pair in the

system. In the present simulations | did not find much effect
The single mean-field class property does not necessarilfwithin statistical error marginof such restrictions for the

mean that belovd.., a single class behavior should occur all long time behavior. The reason for this is that in the large-

behavior.

along thep.(D) transition line. For example, in a similar size limit one should get the same exponents whether or not

model that exhibits an additional global particle number con-one excludes the purely diffusive sector, because all the scal-

servation[8] such situation was found. Therefore, | investi- ing behavior is associated with the reactive sector. Excluding

gated this question by extensive simulations. the purely diffusive sector one eliminates some noise, and
one source of finite-size corrections.

IV. SIMULATION RESULTS

The simulations were performed dn=10° sized rings
with random sequential update version of PCPD evolving by  The critical pointp, for diffusion ratesD=0.05, 0.1, 0.2
the following rules. A particle and a direction are selectedy 5 7 was located by following the time evolution of the

randomly. One of the following reaction is performdd) a
nearest neighbor exchange in the selected direction wit
probability D; (b) an annihilation with the nearest neighbor
particle in the selected direction with probabilipf1—D);

(c) a creation of a new particle in the selected direction at th

A. Density decay simulations

density decay. These simulations were done in two parts.
Rirst runs up totyax~10° MCS and with high statistical
averages { 10%) were performed that allowed local slopes
estimates of the densit{p(t)) decay exponent and p..
®hese simulations were extended by long time runs up to

second nearest neighbor empty site with probability (11y_16#.Mcs with 100-200 sample numbers. The two sets

—p)(1—D) if the nearest neighbor is filled with a particle.
The number of particle$, is followed and the time is
updated by M, following a reactionthroughout the whole
paper the time is measured by Monte Carlo sté@€S)].
The initial conditions were random distribution of particles

with an occupation probability 0.5.

16 T

of data are fitted together and are shown on Figs. 2—-6.,

On all plots one can see up and down veept) curves

in the long time limit—corresponding to active and absorb-
ing phases—separated by a
corresponding t@.. As one can see for high-diffusion rates

roughly straight line—

(D=0.2) scaling with exponent~0.21 seems to a set for

1.4 |

{14 ]

FIG. 2. Density decay time&"?! in one-dimensional PCPD at
D=0.7 andp=0.1574, 0.157 45, 0.1575, 0.157 55, 0.1576, 0.1577D=0.5 andp=0.133 51, 0.13352, 0.133 53, 0.13356, 0.1336,
0.133 63(top to bottom.

(top to bottom curves

08 -

pt

0.6

0.4

. ; 1

10°

10°

FIG. 3. Density decay time
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FIG. 4. Density decay timef?! in one-dimensional PCPD at
D=0.2 and p=0.111215, 0.11217, 0.11218, 0.11219, 0.1122 FIG. 6. Density decay time&?! in one-dimension PCPD for
(top to bottom. D=0.05 andp=0.104 36, 0.104 38, 0.1044, 0.10441, 0.104 42
(top to bottom.
t=3%x10* MCS. This is in agreement with the first results
provided for PCPD for high-diffusion rat¢46] and with the  these results other critical exponents were also investigated

results of Refs[17,24,2§ for strong diffusions. using the precis@. values shown in this section.
In casedD =0.05 and 0.1 straight lines on the log-log plot
appear from t=3x10° MCS with an exponent« B. Steady state simulations

=0.2455). This is in agreement with the results of RZ3] ) ) .
who considered the case with coagulation and annihilation T0 estimate directly the order parameter exponent describ-
rates three times the diffusion rate. This exponent is aboufd the scaling
10% smaller than that was found in R¢L6] but the two
distinct class behavior seems to be supported.

Although the upper critical dimension of PCPD is ex-

p(OO,e)OCGB (11

ected to be afl.= 2 [21] one mav not exclude the possibil- off—qritical, steady state densit.ies had to be measured. Here,
P e=2[21] y P again | usedL =10 system sizes. The density decay was

ity of a second critical dimensiond{=1) or topological followed for eachD and e —b.—b. values on logarithmic
effects in one dimension that may cause logarithmic COMeChime scales until saturatfcl); g?feg was observegJ Followin
tions to scaling. For this reason, | tried to apply logarithmic ' 9

L that averaging ofp(t) was done for about 100 samples
fitting o the data of the form within a time window that exceeds the saturation by a de-

p(t,po)=[(a+bIn(t))/t]* (100  cade. | measured the effective exponents defined as
One can find the corresponding exponents in Table Il which _In[p(,€)]—In[p(,€&_1)] 5
are all in agreement with the value=0.21(1) in both the eff= n(ey)—Mn(e 1) : (12)

low- and high-diffusion regions. Here, | applied least squares

fitting for the most critical-like curves such that the relative \yhich are expected to converge to the true critical values in
error in the sum of squares was at most 0.0001. To confimya ¢, 0 limit.

As one can see on Fig. 7 the local slopesBor 0.7 and

5 ' ' - ' ' D=0.5 converge tg8=0.40(1) in agreement with the high-
G P diffusion rate results provided in RdfL6]. This value is also
y close to Hinrichsen’s estimafe.38(6)| for the cyclically
08 - coupled model[17] and to Kockelkoren’s valu¢0.37(2)]
_ for the suppressed bosonic SCA mofiz6].
=)
BET TABLE II. Summary of simulation results assuming logarithmic
corrections of the form$10) and (13).
06 |
D Pc B a
08 0.7 0.157 461) 0.391) 0.2145)
: 0.5 0.133581) 0.41416) 0.2047)
0.2 0.112 181) 0.4028) 0.2178)
FIG. 5. Density decay time&"?! in one-dimensional PCPD at 0.1 0.106 881) 0.4077) 0.2047)
D=0.1 and p=0.106 86, 0.10688, 0.10689, 0.1069, 0.10691, 0.05 0.104 3a1) 0.41110 0.2169)

0.106 92(top to botton.
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FIG. 7. Effective exponents for different diffusion rates. The
circles correspond tB =0.05; the squares O = 0.1 the diamonds
to D=0.2; the up triangles t® =0.5; and the down triangles to
D=0.7.

However, forD=0.05 andD =0.1 extrapolations suggest

B=0.502). This is in agreement with Park’s recent the re-

sults (~0.5) [23] but somewhat off the low-diffusion data of
Ref. [16] [0.57(2)] and from Dickman’'s estimate®.55—
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FIG. 8. Finite-size scaling of_ (upper pointsandp, («). The
circles correspond t® =0.05; the square®) =0.1; the diamonds,
D=0.2; the up triangles,D=0.5; and the down triangles,
D=0.7. The lines show power-law fittings applied f&r=0.7
data points.

Since the system sizes are much smaller than those shown in
Secs. IV A and IV B one may expect stronger corrections to
scaling. Indeed the power-law fitting f@/ v, results in val-

0.45 [24]. The reason for these deviations is likely to be ues in the range 0.385-0.535 and Bin the range 1.75—2
related to strong finite-size effects, the complex way of Sca"depending o. These results are shown of Fig. 8. Again the

ing and the uncertainties of thg values used.

low-D data are in agreement with those of Réefsd], [23],

In case of theD =0.2 curve one may observe an extrapo- 5,4 [24], while the highD data with those of Refd.14],

lation t_o some intermediate value, but the curvature o_f th‘f26], and[17]. Just considering these ranges one cannot dis-
last points may also suggest a tendency towards the [h'gh'tinguish this transition from the PC clagsvith B/v,

data. Note that in the earlier, lower scale simulatigi the
data forD=0.2 showed lowD critical behavior, strengthen-

=0.500(5) andZ=1.75(1)[7]] that caused initial debates in
the literature[14—-16. Assuming single universality class

ing the assumption that some kind of very slow crossovet,resnonding to higl> data we may expects/
may occur herdalthough those results were obtained for a:0_38?1) angZ=1.75?15). y pectBlv,

SCA version of PCPD

Similarly to the dynamical simulations, | tried the possi-

bility if logarithmic corrections to scaling of the form

p(,€)=[el(@+bln(e))]” (13
could eliminate these differences. As one can see in Table
the exponents for allD values satisfy scaling withg
=0.40(1) with logarithmic corrections of the for(i3).

C. Finite-size scaling

Finite-size scaling investigations pt were performed for
system sizek =32,64,128. . . ,1024. The quasi-steady state
density (averaged over surviving samples expected to
scale according to

ps(®,pe, L)L AL, (14)

V. CONCLUSIONS

In this paper, | addressed the long standing question of
diffusion dependence of the phase transition of the PCPD
model. TheN= 3,4 level cluster mean-field calculations con-
Hrmed a single mean-field universality class scenario simi-
larly to the parity conserving version of this modé1].
Again the best conclusion one can draw from these data is
that theN =2 pair approximation is an odd one and we need
at leastN>2 level of mean-filed to get the correct scaling
behavior for binary production models.

The extensive simulations have confirmed at least one set
of the exponents—those for high diffusion—of the early re-
sults given in Ref[16]. Data in the low-diffusion range are
in good agreement with other recent simulation results sug-
gesting a different universality class. Although the scaling
seems to set in much earlier in the low-diffusion region than

while the characteristic lifetime for half of the samples toin the high-diffusion range, a slow crossover to hiphbe-
reach the absorbing state scales with the dynamical exponehavior can be verified numerically assuming logarithmic cor-

Z as

7(pe,L)xLZ. (15)

rections. Similar conclusions can also be drawn from steady
state simulation results. Although the two-universality class
picture proposed in Ref16] cannot be excluded, data with
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logarithmic corrections assumption provides a strong suppoitb an ultimate DP critical behavior. Finally, the insensitivity
for a single class transition. The field theoretical arguments$o parity conservation in binary production models brings up
confirming or excluding logarithmic corrections would be the question of insensitivity for other conservation laws as
necessary. Note that in one-dimensional coupled systemsell, hence binary production, diffusive models with global
logarithmic corrections are not rare at all. The interpretatiorparticle number conservation may belong to the same class.
of PCPD as a coupled, two-component sysféifj raises the
possibility that topological constrains occurring in one di-
mension are responsible for such behavior.
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