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Critical behavior of the one-dimensional diffusive pair contact process

Géza Ódor
Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary

~Received 20 September 2002; published 24 January 2003!

The phase transition of the one-dimensional diffusive pair contact process is investigated byN cluster
mean-field approximations and high precision simulations. TheN53,4 cluster approximations exhibit smooth
transition line to absorbing state by varying the diffusion rateD with b252 mean-field order parameter
exponent of the pair density. This contradicts with formerN52 results, where two different mean-field
behavior was found along the transition line. Extensive dynamical simulations onL5105 lattices give esti-
mates for the order parameter exponents of the particles for 0.05<D<0.7. These data may support former two
distinct class findings. However, the gap between low- and high-D exponents is narrower than previously
estimated and the possibility for interpreting numerical data as a single class behavior with exponentsa
50.21(1), b50.40(1) assuming logarithmic corrections is shown. Finite-size scaling results are also pre-
sented.
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I. INTRODUCTION

The exploration of nonequilibrium universality classes
of current interest of research. In this area, most syst
investigated exhibit phase transitions to absorbing states
such weak fluctuations from which no return is possi
@1,2#. For a long time, only the robust directed percolati
~DP! universality class has been known@3,4#. Later, systems
with extra conservation laws and symmetries were sho
belong to other universality classes@5–8#. In the past few
years it turned out that there are novel classes in lo
dimensional reaction-diffusion systems, where neit
bosonic field theory nor symmetry arguments can give be
understanding of the critical behavior@9#. This is probably
due to the fact that in low-dimension topological constrai
become effective, blocking the motion of reacting partic
@10#. While bosonic field theories cannot capture this featu
fermionic field theories have not been successful for s
systems yet. In fact the critical classes of such models ca
different, depending on fermionic or bosonic particles, wh
are involved in Refs.@11–14#.

Recently, novel universal behavior is reported in so
low-dimensional reaction-diffusion models featured by p
duction at pairs and explicit single particle diffusion@13–
21#. In these systems, particle production competes with
annihilation and diffusion. If the production wins stead
states with finite particle, density appear in~fermionic! mod-
els with hard-core repulsion, while in unrestricted~bosonic!
models the density diverges. By lowering the production
annihilation rate a doublet of absorbing states without sy
metries emerges. One of such states is completely empty
other possesses a single wandering particle. In case of fe
onic systems, the transition to absorbing states is continu
with novel, yet not completely settled critical behavior.

The existing field theory of binary production reactio
diffusion systems@13#, describing bosonic particles could n
be solved by standard renormalization procedures, but hi
at a transition with non-DP behavior. At the transition po
of the one-dimensional model it predicts a density decay
the form
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s
ith

n

-
r

er

s
s
,
h
be

e
-

ir

r
-
he
i-

us

ed
t
f

r~ t,pc!}F ln~ t !

t G1/2

, ~1!

while in the inactive phase,r(t,pc)}t21/2. These were con-
firmed by simulations@10#. In case of fermionic particles o
this model diffusive pair contact process~PCPD! density ma-
trix renormalization group analysis@14#, coherent anomaly
extrapolation@16#, and simulations@15,16# found a different
kind of critical phase transition. However, the critical exp
nents seem to depend on the diffusion strengthD and differ-
ent interpretations of data have been born. These embrac
possibilities of continuously changing exponents, tw
universality classes@16#, and single class with huge correc
tions @14,22#.

Very recently, well defined set of critical exponents ha
been reported in different versions of binary producti
PCPD-like processes@23#. However, these simulations wer
done at a fixed, high-diffusion per annihilation rate and,
will be shown in Sec. IV, the exponent estimates agree w
with those of this paper in the high-diffusion region. Eve
more recently, two studies@24,25# reported nonuniversality
in the dynamical behavior of the PCPD. While the form
one by Dickman and Menezes explored different sectors~a
reactive and a diffusive one! in the time evolution and gave
nontrivial exponent estimates, the latter one by Hinrichs
provided a hypothesis that the ultimate long time behav
should be characterized by DP behavior.

Just before the submission of this paper, a preprint
Kockelkoren and Chate´ @26# showed simulation results for
modified version of PCPD which is in between fermion
and bosonic cases. That means they discard the single
ticle occupation constraint on the lattice but suppress m
tiple occupancy by an exponentially decreasing creat
probability (pN/2) of the particle number. They claim tha
their stochastic cellular automaton~SCA! model shows
smaller corrections to scaling than the PCPD and exhi
single universality class transition.

The two-universality class scenario was backed by p
mean-field approximation@14# that showed two different
mean-field behavior by varyingD and simulations@16# for
©2003 The American Physical Society11-1
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the order parameter density exponents. Such kind of me
field behavior is absent if we replace the annihilation proc
AA→B by a coagulationAA→A @18#. By the investigation
of the parity conserving version of the PCPD, the mean-fi
and pair-mean-field approximations resulted in similar ph
diagrams, but higher order cluster mean-field showed
single mean-field class behavior@21#. Hence the authors con
cluded that for appropriate description of such binary p
duction models at leastN53 clusters are needed. The
mean-field behavior was indeed found ind5dc52 by simu-
lations @21#.

In the present work, I showN53,4 cluster mean-field
results for the PCPD model that again suggest a single m
field universality class. This does not necessarily imply t
below dc52 only one class should exist. Higher precisi
simulations than that of Ref.@16# are also presented in th
second part of this paper that provide better exponent e
mates but still left this question open. I show that a sin
universality class scenario can be accepted if we ass
logarithmic corrections to data.

II. THE PCPD MODEL

A PCPD-like binary spreading process was introduced
an early work by Grassberger@27#. Its preliminary simula-
tions in one dimension showed a non-DP type transition,
these results have been forgotten for a long time. The PC
introduced by Carlonet al. @14# is controlled by two inde-
pendent parameters: the probability of pair annihilationp and
the probability of particle diffusionD. The dynamical rules
are

AAB,BAA→AAA with rate ~12p!~12D !/2,

AA→BB with rate p~12D !,

AB↔BA with rate D. ~2!

Thesite mean-fieldapproximation gives a continuous trans
tion at pc51/3. For p<pc the particle and pair densitie
exhibit singular behavior,

r~`,p!}~pc2p!b, r2~`,p!}~pc2p!b2, ~3!

while at p5pc they decay as

r~ t,pc!}t2a, r2~ t,pc!}t2a2, ~4!

with the exponents

a51/2, a251, b51, b252. ~5!

According to pair-mean-fieldapproximations the phas
diagram can be separated into two regions~see Fig. 1!. While
for D.1/7 the pair approximation gives the samepc(D) and
exponents as the site mean-field, forD<1/7 the transition
line breaks and the exponents are different

a51, a251, b51, b251. ~6!

In the entire inactive phase the decay is characterized by
exponents
01611
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a51, a252. ~7!

III. CLUSTER MEAN-FIELD RESULTS FOR PCPD

Generalized,cluster mean-fieldapproximation introduced
by Refs.@28,29# was applied for the dynamical rules~2! of
the 1D fermionic lattice model. The master equations forN
51,2,3,4 block probabilities were setup;

]PN~$si%!

]t
5 f „PN~$si%!…, ~8!

where site variables may take values,si5B,A. The equa-
tions could be solved numerically for the@]PN($si%)#/]t
50 steady state condition. Taking into account, spatial
flection symmetries ofPN($si%) this involves ten indepen
dent variables in case ofN54. The particle„r(p,D)… and
pair „r2(p,D)… densities were expressed byPN($si%) and the
phase transition pointpc(D) was located for several value
of D. At pc(D) quadratic fitting of the form

a„p2pc~D !…1b„p2pc~D !…2 ~9!

was applied forr(p,D) andr2(p,D). The N51 and 2 so-
lutions reproduced the results of@14# for particle and pair
densities. ForN52 the two regions, corresponding to diffe
ent leading order singularity ofr2(p,D) with b251,2 were
located by least square fit with the form~9!. For N53,4
approximations smoothpc(d) phase transition lines were de
termined that are shown in Fig. 1 and tabulated in Table
The quadratic fitting~9! resulted in leading order singular
ties b51 for particles andb252 for pairs everywhere.
These are in contradiction with theN52 approximation re-
sults similarly to the parity conserving binary process mo
case @21#. For that model simulations in two dimensio
strengthened the single mean-field class behavior al

FIG. 1. Schematic phase diagram of the one-dimensional PC
model. Circles correspond to simulation and DMRG results; so
line, site mean-field (N51); dashed line, pair approximation (N
52); dot-dashed line,N53; and long-dashedN54 cluster mean-
field results discussed in Sec. III.
1-2
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TABLE I. Summary ofN52,3,4 cluster mean-field approximation results.

N52 N53 N54
D pc b b2 pc b b2 pc b b2

0.9 0.3333 1 2 0.3252 1 2 0.3208 1 2
0.7 0.3333 1 2 0.3036 1 2 0.2875 1 2
0.5 0.3333 1 2 0.2727 1 2 0.2452 1 2
0.2 0.3333 1 2 0.2079 1 2 0.1845 1 2
0.1 0.2888 1 1 0.1840 1 2 0.1680 1 2
0.05 0.2421 1 1 0.1721 1 2 0.1606 1 2
0.0002 0.2002 1 1 0.1604 1 2 0.1537 1 2
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pc(D) and it was conjectured that the pair approximation
an odd one. Here, again I conclude that at leastN.2 level of
approximation is necessary to obtain a correct mean-fi
behavior.

The single mean-field class property does not necess
mean that belowdc , a single class behavior should occur
along thepc(D) transition line. For example, in a simila
model that exhibits an additional global particle number c
servation@8# such situation was found. Therefore, I inves
gated this question by extensive simulations.

IV. SIMULATION RESULTS

The simulations were performed onL5105 sized rings
with random sequential update version of PCPD evolving
the following rules. A particle and a direction are select
randomly. One of the following reaction is performed:~a! a
nearest neighbor exchange in the selected direction
probability D; ~b! an annihilation with the nearest neighb
particle in the selected direction with probabilityp(12D);
~c! a creation of a new particle in the selected direction at
second nearest neighbor empty site with probability
2p)(12D) if the nearest neighbor is filled with a particle

The number of particlesNp is followed and the time is
updated by 1/Np following a reaction@throughout the whole
paper the time is measured by Monte Carlo steps~MCS!#.
The initial conditions were random distribution of particl
with an occupation probability 0.5.

FIG. 2. Density decay timest0.21 in one-dimensional PCPD a
D50.7 andp50.1574, 0.157 45, 0.1575, 0.157 55, 0.1576, 0.15
~top to bottom curves!.
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It was suggested in Ref.@24# that one may get smalle
corrections to scaling if one excludes the purely diffusi
sector by averaging over states having at least one pair in
system. In the present simulations I did not find much eff
~within statistical error margin! of such restrictions for the
long time behavior. The reason for this is that in the larg
size limit one should get the same exponents whether or
one excludes the purely diffusive sector, because all the s
ing behavior is associated with the reactive sector. Exclud
the purely diffusive sector one eliminates some noise,
one source of finite-size corrections.

A. Density decay simulations

The critical pointpc for diffusion ratesD50.05, 0.1, 0.2,
0.5, 0.7 was located by following the time evolution of th
density decay. These simulations were done in two pa
First runs up totmax;105 MCS and with high statistica
averages (;104) were performed that allowed local slope
estimates of the density„r(t)… decay exponenta and pc .
These simulations were extended by long time runs up
107–108-MCS with 100–200 sample numbers. The two s
of data are fitted together and are shown on Figs. 2–6.,

On all plots one can see up and down veeringr(t) curves
in the long time limit—corresponding to active and abso
ing phases—separated by a roughly straight line
corresponding topc . As one can see for high-diffusion rate
(D>0.2) scaling with exponenta;0.21 seems to a set fo

7
FIG. 3. Density decay timest0.21 in one-dimensional PCPD a

D50.5 and p50.133 51, 0.133 52, 0.133 53, 0.133 56, 0.133
0.133 63~top to bottom!.
1-3
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t*33104 MCS. This is in agreement with the first resul
provided for PCPD for high-diffusion rates@16# and with the
results of Refs.@17,24,26# for strong diffusions.

In casesD50.05 and 0.1 straight lines on the log-log pl
appear from t*33102 MCS with an exponent a
50.245(5). This is in agreement with the results of Ref.@23#
who considered the case with coagulation and annihila
rates three times the diffusion rate. This exponent is ab
10% smaller than that was found in Ref.@16# but the two
distinct class behavior seems to be supported.

Although the upper critical dimension of PCPD is e
pected to be atdc52 @21# one may not exclude the possibi
ity of a second critical dimension (dc851) or topological
effects in one dimension that may cause logarithmic corr
tions to scaling. For this reason, I tried to apply logarithm
fitting to the data of the form

r~ t,pc!5@„a1b ln~ t !…/t#a. ~10!

One can find the corresponding exponents in Table II wh
are all in agreement with the valuea50.21(1) in both the
low- and high-diffusion regions. Here, I applied least squa
fitting for the most critical-like curves such that the relati
error in the sum of squares was at most 0.0001. To con

FIG. 4. Density decay timest0.21 in one-dimensional PCPD a
D50.2 and p50.111 215, 0.112 17, 0.112 18, 0.112 19, 0.11
~top to bottom!.

FIG. 5. Density decay timest0.21 in one-dimensional PCPD a
D50.1 and p50.106 86, 0.106 88, 0.106 89, 0.1069, 0.106 9
0.106 92~top to bottom!.
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these results other critical exponents were also investig
using the precisepc values shown in this section.

B. Steady state simulations

To estimate directly the order parameter exponent desc
ing the scaling

r~`,e!}eb ~11!

off-critical, steady state densities had to be measured. H
again I usedL5105 system sizes. The density decay w
followed for eachD and e i5pc2pi values on logarithmic
time scales until saturation effect was observed. Follow
that averaging ofr(t) was done for about 100 sample
within a time window that exceeds the saturation by a
cade. I measured the effective exponents defined as

be f f5
ln@r~`,e i !#2 ln@r~`,e i 21!#

ln~e i !2 ln~e i 21!
, ~12!

which are expected to converge to the true critical values
the e→0 limit.

As one can see on Fig. 7 the local slopes forD50.7 and
D50.5 converge tob50.40(1) in agreement with the high
diffusion rate results provided in Ref.@16#. This value is also
close to Hinrichsen’s estimate@0.38(6)# for the cyclically
coupled model@17# and to Kockelkoren’s value@0.37(2)#
for the suppressed bosonic SCA model@26#.

,

FIG. 6. Density decay timest0.21 in one-dimension PCPD for
D50.05 and p50.104 36, 0.104 38, 0.1044, 0.104 41, 0.104
~top to bottom!.

TABLE II. Summary of simulation results assuming logarithm
corrections of the forms~10! and ~13!.

D pc b a

0.7 0.157 45~1! 0.39~1! 0.214~5!

0.5 0.133 53~1! 0.414~16! 0.206~7!

0.2 0.112 18~1! 0.402~8! 0.217~8!

0.1 0.106 88~1! 0.407~7! 0.206~7!

0.05 0.104 39~1! 0.411~10! 0.216~9!
1-4
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However, forD50.05 andD50.1 extrapolations sugges
b50.50(2). This is in agreement with Park’s recent the r
sults (;0.5) @23# but somewhat off the low-diffusion data o
Ref. @16# @0.57(2)# and from Dickman’s estimates~0.55–
0.45! @24#. The reason for these deviations is likely to
related to strong finite-size effects, the complex way of sc
ing and the uncertainties of thepc values used.

In case of theD50.2 curve one may observe an extrap
lation to some intermediate value, but the curvature of
last points may also suggest a tendency towards the higD
data. Note that in the earlier, lower scale simulations@16# the
data forD50.2 showed low-D critical behavior, strengthen
ing the assumption that some kind of very slow crosso
may occur here~although those results were obtained for
SCA version of PCPD!.

Similarly to the dynamical simulations, I tried the poss
bility if logarithmic corrections to scaling of the form

r~`,e!5@e/„a1b ln~e!…#b ~13!

could eliminate these differences. As one can see in Tab
the exponents for allD values satisfy scaling withb
50.40(1) with logarithmic corrections of the form~13!.

C. Finite-size scaling

Finite-size scaling investigations atpc were performed for
system sizesL532,64,128, . . . ,1024. The quasi-steady sta
density ~averaged over surviving samples! is expected to
scale according to

rs~`,pc ,L !}L2b/n', ~14!

while the characteristic lifetime for half of the samples
reach the absorbing state scales with the dynamical expo
Z as

t~pc ,L !}LZ. ~15!

FIG. 7. Effectiveb exponents for different diffusion rates. Th
circles correspond toD50.05; the squares toD50.1 the diamonds
to D50.2; the up triangles toD50.5; and the down triangles to
D50.7.
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Since the system sizes are much smaller than those show
Secs. IV A and IV B one may expect stronger corrections
scaling. Indeed the power-law fitting forb/n' results in val-
ues in the range 0.385–0.535 and forZ in the range 1.75–2
depending onD. These results are shown of Fig. 8. Again t
low-D data are in agreement with those of Refs.@14#, @23#,
and @24#, while the high-D data with those of Refs.@14#,
@26#, and@17#. Just considering these ranges one cannot
tinguish this transition from the PC class@with b/n'

50.500(5) andZ51.75(1)@7## that caused initial debates i
the literature@14–16#. Assuming single universality clas
corresponding to high-D data we may expectb/n'

50.38(1) andZ51.75(15).

V. CONCLUSIONS

In this paper, I addressed the long standing question
diffusion dependence of the phase transition of the PC
model. TheN53,4 level cluster mean-field calculations co
firmed a single mean-field universality class scenario si
larly to the parity conserving version of this model@21#.
Again the best conclusion one can draw from these dat
that theN52 pair approximation is an odd one and we ne
at leastN.2 level of mean-filed to get the correct scalin
behavior for binary production models.

The extensive simulations have confirmed at least one
of the exponents—those for high diffusion—of the early r
sults given in Ref.@16#. Data in the low-diffusion range are
in good agreement with other recent simulation results s
gesting a different universality class. Although the scali
seems to set in much earlier in the low-diffusion region th
in the high-diffusion range, a slow crossover to high-D be-
havior can be verified numerically assuming logarithmic c
rections. Similar conclusions can also be drawn from ste
state simulation results. Although the two-universality cla
picture proposed in Ref.@16# cannot be excluded, data wit

FIG. 8. Finite-size scaling oftL ~upper points! andrL(`). The
circles correspond toD50.05; the squares,D50.1; the diamonds,
D50.2; the up triangles,D50.5; and the down triangles
D50.7. The lines show power-law fittings applied forD50.7
data points.
1-5
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logarithmic corrections assumption provides a strong sup
for a single class transition. The field theoretical argume
confirming or excluding logarithmic corrections would b
necessary. Note that in one-dimensional coupled syst
logarithmic corrections are not rare at all. The interpretat
of PCPD as a coupled, two-component system@17# raises the
possibility that topological constrains occurring in one
mension are responsible for such behavior.

The finite-size simulations could not give decisive supp
for any of the possible dependences of the diffusion of t
transition, but the range of results are in agreement w
those of other numerical results of the literature.

The values of mean-filed exponents, the upper critical
mension, and the lack of time reversal symmetry in t
model seem to exclude the possibility of further crossov
01611
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to an ultimate DP critical behavior. Finally, the insensitivi
to parity conservation in binary production models brings
the question of insensitivity for other conservation laws
well, hence binary production, diffusive models with glob
particle number conservation may belong to the same cl
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